
Machine learning techniques for annotating semantic web services

Andreas Heß Eddie Johnston Nicholas Kushmerick
Computer Science Department, University College Dublin

{andreas.hess, eddie.johnston, nick}@ucd.ie

Introduction
The vision of semantic Web Services is to provide the means
for fully automated discovery, composition and invocation
of loosely coupled software components. One of the key ef-
forts to address this “semantic gap” is the well-known OWL-
S ontology (The DAML Services Coalition 2003).

However, software engineers who are developing Web
Services usually do not think in terms of ontologies, but
rather in terms of their programming tools. Existing tools
for both the Java and .NET environments support the auto-
matic generation of WSDL. We believe that it would boost
the semantic service web if similar tools existed to (semi-)
automatically generate OWL-S or a similar form of semantic
metadata.

In this paper we will present a tool called ASSAM—
Automated Semantic Service Annotation with Machine
Learning—that addresses these needs. ASSAM consists of
two parts, a WSDL annotator application, and OATS, a data
aggregation algorithm.

First, we describe the WSDL annotator application. This
component of ASSAM uses machine learning to provide the
user with suggestions on how to annotate the elements in the
WSDL. In go on to describe the iterative relational classifi-
cation algorithm that provides these suggestions. We evalu-
ate our algorithms on a set of 164 Web Services.1

Second, we describe OATS, a novel schema mapping al-
gorithm specifically designed for the Web Services context,
and empirically demonstrate its effectiveness on 52 invok-
able Web Service operations. OATS addresses the problem
of aggregating the heterogenous data from several Web Ser-
vices.

ASSAM: A Tool for Web Service Annotation
One of the central parts of ASSAM is the WSDL annotator
application. The WSDL annotator is a tool that enables the
user to semantically annotate a Web Service using a point-
and-click interface. The key feature of the WSDL annotator
is the ability to suggest which ontological class to use to
annotate each element in the WSDL.

Fig. 1 shows the ASSAM application. Note that our appli-
cation’s key novelty—the suggested annotations created au-

1All our our experimental data is available in the Repository of
Semantic Web Servicessmi.ucd.ie/RSWS .

Figure 1: ASSAM uses learning techniques to semi-
automatically annotate Web Services with semantic meta-
data.

tomatically by our machine learning algorithm—are shown
in the small pop-up window.

Once the annotation is done it can be exported in OWL-S.
The created OWL-S consists of a profile, a process model, a
grounding and a concept file if complex types where present
in the WSDL. Note that this also includes XSLT transfor-
mations as needed in the OWL-S grounding to map between
the traditional XML Schema representation of the input and
output data and the OWL representation.

Limitations. Because we do not handle composition and
workflow in our machine learning approach, the generated
process model consists only of one atomic process per op-
eration. The generated profile is a subclass of the assigned
category of the service as a whole – the category ontology
services as profile hierarchy. The concept file contains a rep-
resentation of the annotated XML schema types in OWL-S.
Note that it is up to the ontology designer to take care that
the datatype ontology makes sense and that it is consistent.
No inference checks are done on the side of our tool. Fi-
nally, a grounding is generated that also contains the XSLT
mappings from XML schema to OWL and vice versa.

For the OWL export, we do not use the annotations for the
operations at the moment, as there is no direct correspon-
dence in OWL-S for the domain of an operation. Atomic
processes in OWL-S are characterized only through their in-



puts, outputs, preconditions and effects; and for the profile
our tool uses the service category.

Related Work. (Paolucciet al. 2003) addressed the prob-
lem of creating semantic metadata (in the form of OWL-S)
from WSDL. However, because WSDL contains no seman-
tic information, this tool provides just a syntactic transfor-
mation. The key challenge is to map the XML data used by
traditional Web Services to classes in an ontology.

Currently, (Patilet al. 2004) are also working on match-
ing XML schemas to ontologies in the Web Services do-
main. They use a combination of lexical and structural sim-
ilarity measures. They assume that the user’s intention is
not to annotate similar services with one common ontology,
rather they also address the problem of choosing the right
domain ontology among a set of ontologies.

(Sabou 2004) addresses the problem of creating suitable
domain ontologies in the first place. She uses shallow natu-
ral language processing techniques to assist the user in cre-
ating an ontology based on natural language documentation
of software APIs.

Iterative Relational Classification
For our learning approach, we cast the problem of classi-
fying operations and datatypes in a Web Service as a text
classification problem. Our tool learns from Web Services
with existing semantic annotation. Given this training data,
a machine learning algorithm can generalize and predict se-
mantic labels for previously unseen Web Services.

In a mixed-initiative setting, these predictions do not have
to be perfectly accurate to be helpful. In fact, the classifi-
cation task is quite hard, because the domain ontologies can
be very large. But for that reason it is already very help-
ful for a human annotator if he or she would have to choose
only between a small number of ontological concepts rather
than from the full domain ontology. In previous work (Heß
& Kushmerick 2003) we have shown that the category of
a services can be reliably predicted, if we stipulate merely
that the correct concept be one of the top few (e.g., three)
suggestions.

The basic idea behind our approach is to exploit the fact
that there are dependencies between the category of a Web
Service, the domains of its operations and the datatypes of
its input and output parameters. Our algorithm is based on
a set of features of the services, operations and parameters.
Following Neville and Jensen (Neville & Jensen 2003), we
distinguish betweenintrinsic andextrinsicfeatures. The in-
trinsic features of a document part are simply its name and
other text that is associated with it (e.g., text from the oc-
casionaldocumentation tags). Extrinsic features derive
from the relationship between different parts of a document.
We use the semantic classes of linked document parts as ex-
trinsic features.

Initially, when no annotations for a service exist, the ex-
trinsic features are unknown. After the first pass, where clas-
sifications are made based on the intrinsic features, the val-
ues of the extrinsic features are set based on the previous

Service
Category

Messages
Datatypes

C

Operations
Domains

B

B add

add

A B

Static features Dynamic features Specialised Classifiers

Input

Output

vote Prediction

C

Figure 2: Feedback structure and algorithm.

classifications. Of course, these classifications may be par-
tially incorrect. The classification process is repeated until
a certain termination criterion (e.g. either convergence or a
fixed number of iterations) is met. Fig. 2 shows an illustra-
tion of the classification phase of the algorithm.

For a more detailed discussion of our algorithm and the
way it differs from other iterative algorithms the reader is re-
ferred to our paper (Heß & Kushmerick 2004) that describes
the algorithm in greater detail from a machine learning point
of view.

Evaluation. We evaluated our algorithm using a leave-
one-out methodology. We compared it against a baseline
classifier with the same setup for the static features, but with-
out using the dynamic extrinsic features.

To determine the upper bound of improvement that can
be achieved using the extrinsic features, we tested our algo-
rithm with the correct class labels given as the extrinsic fea-
tures. This tests the performance of predicting a class label
for a document part when not only the intrinsic features but
also the dynamic features, the labels for all other document
parts, are known.

We also compared it against a non-ensemble setup, where
the extrinsic features are not added using a separate classifier
but rather are just appended to the static features. Classifica-
tion is then done with a single classifier. This setup closely
resembles the original algorithm proposed by Neville and
Jensen. Again, the same set of static features was used.

In the evaluation we ignored all classes with one or two
instances, such as occurred quite frequently on the datatype
level. The distributions are still quite skewed and there is a
large number of classes. There are 22 classes on the category
level, 136 classes on the domain level and 312 classes on the
datatype level.

Fig. 3 show the accuracy for categories, domains and
datatypes. As mentioned earlier, in mixed-initiative scenario
such as our semi-automated ASSAM tool, it is not necessary
to be be perfectly accurate. Rather, we strive only to ensure
that that the correct ontology class is in the top few sugges-
tions. We therefore show how the accuracy increases when
we allow a certain tolerance. For example, if the accuracy
for tolerance 9 is 0.9, then the correct prediction is within the
top 10 of the ranked predictions the algorithm made 90% of
the time.

We could not achieve good results with the non-ensemble
setup. This setup scored worse than the baseline. For the



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

A
cc

ur
ac

y

Tolerance, Category

Baseline

3

3
3 3 3

3

3
Assam

+

+
+

+ + +

+
Ceiling

2

2 2
2

2 2

2
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Domain

3

3

3
3

3
3

+

+
+

+ + +

2

2

2
2 2 2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
Datatypes

3

3

3
3

3 3

+

+
+

+ + +

2

2

2
2

2
2

Figure 3: Accuracy of our algorithm on the three kinds of semantic metadata as a function of prediction tolerance.

datatypes, even the ceiling accuracy was below the baseline.

Related work. We already mentioned the algorithm by
Neville and Jensen (Neville & Jensen 2000), but iterative
classification algorithms were also used for link-based hy-
pertext classification by Lu and Getoor (Lu & Getoor 2003).
Relational learning for hypertext classification was also ex-
plored by Slattery et al., e.g. (Ghani, Slattery, & Yang 2001;
Yang, Slattery, & Ghani 2002). A difference between their
problem setting and ours is that the links in our dataset are
only within one Web Services, where in the hypertext do-
main potentially all documents can link to each other.

Aggregating data from Web Services
ASSAM uses the machine learning technique just described
to create semantic metadata that could assist (among other
applications) a data integration system that must identify
and invoke a set of Web Services operations that can an-
swer some query. In order to automatically aggregate the
resulting heterogeneous data into some coherent structure,
we are currently developing OATS (Operation Aggregation
Tool for Web Services), a schema matching algorithm that is
specifically suited to aggregating data from Web Services.

While most schema matching algorithms don’t consider
instance data, those that do take as input whatever data hap-
pens to be available. In contrast, OATS actively probes Web
Services with a small set of related queries, which results in
contextually similar data instances and greatly simplifies the
matching process. Another novelty of OATS is the use of
ensembles of distance metrics for matching instance data to
overcome the limitations of any one particular metric. Fur-
thermore, OATS can exploit training data to discover which
metrics are more accurate for each semantic category.

As an example, consider two very simple Web Service op-
erations that return weather information. The first operation
may return data such as

<weather><hi>87</hi><lo>56</lo>

<gusts>NE, 11 mph</gusts></weather>

while the second operation may return data such as
<fcast><tmax>88</tmax><tmin>57</tmin>

<wndspd>10 mph (N)</wndspd></fcast>

The goal of data aggregation is to consolidate this heteroge-
neous data into a single coherent structure.

The major difference between traditional schema match-
ing and our Web Service aggregation task is that we can ex-
ert some control over the instance data. Our OATS algorithm
probes each operation with arguments that correspond to the
same real-world entity. For example, to aggregate operation
O1 that maps a ZIP code to its weather forecast, and oper-
ation O2 that maps a latitude/longitude pair to its forecast,
OATS could first select a specific location (e.g., Seattle), and
then queryO1 with “98125” (a Seattle ZIP code), and query
O2 with “47.45N/122.30W” (Seattle’s geocode). Probing
each operation with the related arguments should ensure that
the instance data of related elements will closely correspond,
increasing the chances of identifying matching elements.

As in ILA (Perkowitz & Etzioni 1995), this probe-based
approach is based on the assumption that the operations
overlap—ie, there exists a set of real-world entities covered
by all of the sources. For example, while two weather Web
Service need not cover exactly the same locations in order
to be aggregated, we do assume that there exists a set of lo-
cations covered by both.

The OATS algorithm. The input to the OATS algorithm
is a set of Web Service operationsO = {o1, o2, . . . , on},
a set of probe objectsP = {p1, . . . , pm}, sufficient meta-
data about the operations so that each operation can be in-
voked on each probe (V = {v1, . . . , vn}, wherevi is a
mapping from a probepk ∈ P to the input parameters that
will invoke oi on pk), and a set of string distance metrics
D = {d1, d2, . . .}.

When invoked, an operationoi ∈ O generates data with
elementsEi = {ei

1, e
i
2, . . .}. Let E = ∪iEi be all the op-

erations’ elements. The output of the OATS algorithm is a
partition ofE.



One of the distinguishing features of our algorithm is
the use of an ensemble of distance metrics for matching
elements. For example, when comparing thegusts and
wndspd instance data above, it makes sense to use a token
based matcher such as TFIDF, but when comparinghi and
tmax , an edit-distance based metric such as Levenshtein is
more suitable. The OATS algorithm calculates similarities
based on the average similarities of an ensemble of distance
metrics. Later, we describe an extension to OATS which as-
signs weights to distance metrics according to how well they
correlate with a set of training data.

The OATS algorithm proceeds as follows. Each of then
operations are invoked with the appropriate parameters for
each of them probe objects. The resultingnm XML doc-
uments are stored in a three-dimensional tableT : T [i, j, k]
stores the value returned for elementei

j ∈ Ei by operation
oi for probepk.

Each element is then compared with every other ele-
ment. The distance between an element pair(ei

j , e
i′

j′) ∈
E × E is calculated for each string distance metricd` ∈
D, and these values are merged to provide an ensem-
ble distance value for these elements. The similarity be-
tween two elementsei

j ∈ Ei andei′

j′ ∈ Ei′ is defined as

D(ei
j , e

i′

j′) = 1
|D|

∑
`(d̄`(ei

j , e
i′

j′) − m(d̄`))/R(d̄`), where

d̄`(ei
j , e

i′

j′) = 1
m

∑
k d`(T [i, j, k], T [i′, j′, k]), M(d̄`) =

max(ei
j
,ei′

j′ )
d̄`(ei

j , e
i′

j′), m(d̄`) = min(ei
j
,ei′

j′ )
d̄`(ei

j , e
i′

j′), and

R(d̄`) = M(d̄`)−m(d̄`).
By computing the average distanced̄` overm related sets

of element pairs, we are minimizing the impact of any spuri-
ous instance data. Before merging the distance metrics, they
are normalized relative to the most similar and least similar
pairs, as different metrics produce results in different scales.

To get the ensemble similarityD(ei
j , e

i′

j′) for any pair,
we combine the normalized distances for eachdj . In the
standard OATS algorithm, this combination is simply an un-
weighted average. We also show below how weights can be
adaptively tuned for each element-metric pair.

Given the distances between each pair of elements, the fi-
nal step of the OATS algorithm is to cluster the elements.
This is done using the standard hierarchical agglomerative
clustering (HAC) approach. Initially, each element is as-
signed to its own cluster. Next, the closest pair of clusters is
found (using the single, complete, or average link methods)
and these are merged. The previous step is repeated until
some termination condition is satisfied. At some point in the
clustering, all of the elements which are considered similar
by our ensemble of distance metrics will be merged, and fur-
ther iterations would only force together unrelated clusters.
It is at this point that we should stop clustering. Our imple-
mentation relies on a user-specified termination threshold.

Weighted distance metrics. Instead of giving an equal
weight to each distance metric for all elements, it would
make sense to treat some metrics as more important than
others, depending on the characteristics of the data being
compared. We now show how we can exploit training data

address city state fullstate zip areacode lat long icao
110 135th Avenue New York NY New York 11430 718 40.38 -74.75 KJFK
101 Harborside Drive Boston MA Massachusetts 02128 781 42.21 -71.00 KBOS
18740 Pacific Highway South Seattle WA Washington 98188 206 47.44 -122.27 KSEA
9515 New Airport Drive Austin TX Texas 78719 512 30.19 -97.67 KAUS

Figure 4: The four probe objects for the zip and weather
domains.

to automatically discover which distance metrics are most
informative for which elements. The key idea is that a good
distance metric will give a small value for pairs of semanti-
cally related instances, while giving a large value for unre-
lated pairs.

We assume access to a set of training data: a par-
tition of some set of elements and their instance data.
Based on such training data, thegoodnessof metric dj

for a non-singleton clusterC is defined asG(dj , C) =
G′(dj , C)/ 1

c

∑
C′ G′(dj , C

′), wherec is the number of non-
singleton clustersC ′ in the training data,Dintra(dj , C) is
the averageintra-cluster distance—i.e., the average distance
between pairs of elements withinC, Dinter(dj , C) is the av-
erageinter-cluster distance—i.e., the average distance be-
tween an element inC and an element outsideC, and
G′(dj , C) = Dinter(dj , C)−Dintra(dj , C). A distance met-
ric dj will have a scoreG(dj , C) > 1 if it is “good” (better
than average) at separating data from clusterC from data
outside the cluster, whileG(dj , C) < 1 suggests thatdj is a
bad metric forC.

Given these goodness values, we modify OATS in two
ways. The first approach (“binary”) gives a weight of 1 to
metrics withG > 1, and ignores metrics withG ≤ 1. The
second approach (“proportional”), assigns weights that are
proportional to the goodness values.

Evaluation. We evaluated our Web Service aggregation
tool on three groups of semantically related Web Service
operations: 31 operations providing information about ge-
ographical locations, 8 giving current weather information,
and 13 giving current stock information. To enable an ob-
jective evaluation, a reference partition was first created by
hand for each of the three groups. The partitions generated
by OATS were compared to these reference partitions. In
our evaluation, we used the definition of precision and recall
proposed by (Heß & Kushmerick 2003) to measure the sim-
ilarity between two partitions. The string distance metrics
were selected from Cohen’s SecondString library (Cohen,
Ravikumar, & Fienberg 2003).

We ran a number of tests on each domain. We system-
atically vary the HAC termination threshold, from one ex-
treme in which each element is placed in its own cluster, to
the other extreme in which all elements are merged into one
large cluster.

Each probe entity is represented as a set of attribute/value
pairs. For example, Fig. 4 shows the four probes used for the
weather and location information domains. We hand-crafted
rules to match each of an operation’s inputs to an attribute.
To invoke an operation, the probe objects (ie, rows in Fig. 4)
are searched for the required attributes.



0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

F
1

HAC termination threshold

Levenstein
TFIDF

Ensemble

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

F
1

HAC termination threshold

proportional
binary

untrained

Figure 5: OATS ensemble vs. individual distance met-
rics (left); OATS with vs. without adaptive distance metric
weighting (right).

Results. First, we show that an ensemble of string met-
rics achieves better results than using the metrics separately.
Fig. 5 (left) compares the ensemble approach to the Leven-
shtein and TFIDF metrics individually. We report the aver-
age performance over the three domains as F1 as a function
of the HAC termination threshold. Note that, as expected,
F1 peaks at an intermediate value of the HAC termination
threshold. The average and maximum F1 is higher for the
ensemble of metrics, meaning that it is much less sensitive
to the tuning of the HAC termination threshold.

We now compare the performance of OATS with our
two methods (binary and proportional) for using the learned
string metric weights. These results are based on four
probes. We used two-fold cross validation, where the set
of operations was split into two equal-sized subsets,Strain

andStest. Strain was clustered according to the reference
clusters, and weights for each distance metric were learned.
Clustering was then performed on the entire set of elements.
Note that we clustered the training data along with the test
data in the learning phase, but we did not initialize the clus-
tering process with reference clusters for the training data
prior to testing. We measured the performance of the clus-
tering by calculating precision and recall for just the ele-
ments ofStest. Fig. 5 (right) shows F1 as a function of the
HAC termination threshold for the binary and proportional
learners and the original algorithm. Although neither of the
learning methods increase the maximum F1, they usually in-
crease the average F1, suggesting that learning makes OATS
somewhat less sensitive to the exact setting of the HAC ter-
mination threshold.

Active probe selection
Our experiments show that the accuracy of OATS improves
with additional probes. Furthermore, some probes yield
more informative output data than others—i.e. there can be a
substantial difference in accuracy depending on the specific
probes.

For example, Fig. 6 shows the variation in F1 when dif-
ferent combinations of probes (from a set of 12) were used
to invoke the web services in one of our test domains. With
2 probes, there are12!/2!(12 − 2!) = 66 such choices, and
F1 varies from 62% to 72%. With 6 probes, there are 924
choices and F1 ranges from 68% to 76%. These data demon-
strate that performance generally increases with additional
probing. More interestingly, they show that a small carefully
chosen set of probes can be as effective as a much larger set

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0 10 20 30 40 50 60

maxF1

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0 100 200 300 400 500 600 700 800 900

maxF1

Figure 6: F1 variation for various combinations of 2 (left)
and 6 (right) probes.

Figure 7: The fraction of books from each category, as a
function of the average F1 resulting from probes selected
with the given categories. The horizontal axis is F1, ranging
from 33–43%; the vertical axis ranges from 0–100%.

chosen randomly. Given that each additional probe costs
additional human effort as well as bandwith and process-
ing, we are interested in exploring active approaches to Web
Service aggegation that chose probes in order to maximize
accuracy while minimizing cost.

The variation in performance of one set of probes com-
pared to another could be due to a number of reasons, de-
pending on the domain. For instance, Fig. 7 shows how the
proportion of various genres of book probes changes as per-
formance increases. In this case, invoking the Web Services
with ‘classic’ probes ( books such asOliver Twist) results in
poorer performance than is achieved if ‘non-fiction’ or ‘best-
seller’ probes are used. Exactly why these probes are more
effective is unclear. Perhaps the descriptions returned for
bestsellers have fewer errors because they are deemed more
important by the service providers?

Probes can interact. For example, perhaps probesp1 and
p2 are both promising in isolation, but probing with bothp1

andp2 offers no improvement, or even a decrease in accu-
racy. For example, in the weather domain, probing with mul-
tiple very close locations may yield non-discriminatory out-
puts which results in poorer results than would be returned
using more discriminatory probes. Fig. 8 lists the data re-
turned for 6 elements from 4 Web Services, for an initial
probe with Fort Lauderdale, as well as the data return for
three additional probes at varying distances.

The cost invested in the Miami probe is probably wasted,
since each of the results is too similar to the initial result
set and the same mistake would be made on each set. For
example,O2T2 (Relative Humidity) would be mistakenly



O1T1 O1T3 O2T2 O3T1 O4T2 O4T3
Ft Lauderdale Florida 88 88 80.15 Florida
Miami Florida 88 87 80.19 Florida
Jackson Florida 67 91 81.2 Florida
Anchorage Alaska -15 68 150. Alaksa

Figure 8: Data returned for probing four weather services
for Fort Lauderdale, and 3 additional cities increasingly far
from Fort Lauderdale.

matched withO3T1 (Temperature). In this case, probing
with only the intial probe would have returned the same
result as with both probes but at half the cost. By exam-
ining the variation in performance resulting from various
probe choices, it may be evident that additional probe ob-
jects should not be in Florida, should have a longitude that
is substantially different from 80.1, etc.

There is of course a detailed explanation for these results:
booksellers’ pay more attention to the data for bestsellers
than classics; nearby cities tend to have similar weather; etc.
From our perspective, the ultimate explanation doesn’t mat-
ter. Rather, our goal is to learn to exploit whatever regu-
larities may exist. More concretly, can we devise an active
learning algorithm that can automatically determine that, for
example, in the books domain it is wise to avoid “classic”
books, and that in weather domain it is best to avoid nearby
cities? Armed with such knowledge, OATS could select its
probes so as to reduce the total number of probes required,
while maximizing accuracy.

A common approach to active learning (Cohn, Atlas, &
Ladner 1994) is to select training data based on the learner’s
confidence: the learner is bootstrapped with some hand-
classified instances from which it creates a classifier which
is used to annotate each unlabelled instance. The instances
with the lowest annotation certainty are then annotated by
an expert and used to train the learner on the next iteration.

In our aggregation problem, we do not seek to annotate
any instance data but wish to select the probe objects that
will result in the highest quality data when used to invoke
a set of web services. Instead of suggesting instance data
that might potentially be misclassified, our aim would be
to identify probes that will yiled data that can profitably be
combined with data obtained from previous probes. We are
currently exploring algorithms to address this problem.

Summary
We have presented ASSAM, a tool for annotating Seman-
tic Web Services. We have presented the WSDL annota-
tor application, which provides an easy-to-use interface for
manual annotation, as well as machine learning assistance
for semi-automatic annotation. Our application is capable
of exporting the annotations as OWL-S.

We have also presented a new iterative relational classifi-
cation algorithm that combines the idea of existing iterative
algorithms with the strengths of ensemble learning. We have
evaluated this algorithm on a set of real Web Services and
have shown that it outperforms a simple classifier and that it
is suitable for semi-automatic annotation.

Finally, we have described techniques for semantically
aggregating the data returned from Web Services. Web Ser-
vice aggregation is an instance of the schema matching prob-
lem in which instance data is particularly important. We
have illustrated how actively probing Web Services with a
small number of inputs can result in contextually related in-
stance data which makes matching easier. Our experiments
demonstrate how using an ensemble of distance metrics per-
forms better than the application of individual metrics. We
also proposed a method for adaptively combining distance
metrics in relation to the characteristics of the data being
compared. We have proposed to use active probe selection to
choose highly-informative probes, yielding higher accuracy
at lower cost. We are currently investigating adaptive al-
gorithms that automatically discover domain-specific probe-
selection strategies.

Acknowledgments. This research was supported by Science
Foundation Ireland and the US Office of Naval Research.

References
Cohen, W. W.; Ravikumar, P.; and Fienberg, S. E. 2003. A com-
parison of string distance metrics for name-matching tasks. InInt.
Joint Conf. on AI, Workshop on Inf. Integr. on the Web.

Cohn, D. A.; Atlas, L.; and Ladner, R. E. 1994. Improving gener-
alization with active learning.Machine Learning15(2):201–221.

Ghani, R.; Slattery, S.; and Yang, Y. 2001. Hypertext categoriza-
tion using hyperlink patterns and meta data. In18th Int. Conf. on
Machine Learning.

Heß, A., and Kushmerick, N. 2003. Learning to attach semantic
metadata to web services. In2nd Int. Sem. Web. Conf.

Heß, A., and Kushmerick, N. 2004. Iterative ensemble classifi-
cation for relational data: A case study of semantic web services.
In ECML.

Lu, Q., and Getoor, L. 2003. Link-based classification. InInt.
Conf. on Machine Learning.

Neville, J., and Jensen, D. 2000. Iterative classification in rela-
tional data. InAAAI Workshop SRL.

Neville, J., and Jensen, D. 2003. Statistical relational learning:
Four claims and a survery. InWorkshop SRL, Int. Joint. Conf. on
AI.

Paolucci, M.; Srinivasan, N.; Sycara, K.; and Nishimura, T. 2003.
Towards a semantic choreography of web services: From WSDL
to DAML-S. In ISWC.

Patil, A.; Oundhakar, S.; Sheth, A.; and Verma, K. 2004. Meteor-
s web service annotation framework. In13th Int. WWW Conf.

Perkowitz, M., and Etzioni, O. 1995. Category translation: Learn-
ing to understand information on the internet. InInt. Joint Conf.
on AI.

Sabou, M. 2004. From software APIs to web service ontologies:
a semi-automatic extraction method. InISWC.

The DAML Services Coalition. 2003. OWL-S 1.0. White Paper.

Yang, Y.; Slattery, S.; and Ghani, R. 2002. A study of approaches
to hypertext categorization.Journal of Intelligent Information
Systems18(2-3):219–241.


