
Iterative Ensemble Classification for Relational
Data: A Case Study of Semantic Web Services

Andreas Heß and Nick Kushmerick

Computer Science Department, University College Dublin, Ireland
{andreas.hess, nick}@ucd.ie

Abstract. For the classification of relational data, iterative algorithms
that feed back predicted labels of associated objects have been used. In
this paper we show two extensions to existing approaches. First, we pro-
pose to use two separate classifiers for the intrinsic and the relational
(extrinsic) attributes and vote their predictions. Second, we introduce
a new way of exploiting the relational structure. When the extrinsic at-
tributes alone are not sufficient to make a prediction, we train specialised
classifiers on the intrinsic features and use the extrinsic features as a se-
lector. We apply these techniques to the task of semi-automated Web
Service annotation, a task with a rich relational structure.

1 Introduction

In a variety of learning tasks, a number of related views on a problem exist.
Several approaches have been suggested for how to make use of these different
views for improving accuracy by using more than one classifier. These approaches
include ensemble learning, co-training, and link-based classification for relational
data. For the latter, the second view for a given object is derived from the objects
with which it is related. This view is also known as the extrinsic view (as opposed
to the intrinsic view). The intuition is that an object’s class can be predicted
from information about related objects.

Iterative classification algorithms for relational data have been proposed to
address this setting (e.g. [10]). These algorithms are based on the assumption
that, as we classify objects, these predictions have an influence on related ob-
jects. Initially, a preliminary set of predictions is made based only on the intrinsic
features. Then, predicted labels are fed back to the classifier. Classification ac-
curacy is expected to improve over time, as the labels of related objects become
known with more certainty.

In this paper, we present a generic framework for iterative classification of
relational data. We combine the intrinsic and the extrinsic view using an ensem-
ble of two classifiers. The first classifier is based on a set of static features: the
intrinsic features associated with the object or related objects. We denote the
static classifier as A.

The second classifier B is derived from the labels of related objects. In some
classification tasks, the dynamic view may be sufficient to classify an object, so



we train B on all the objects and combine the results of the A and B classifier by
voting. In more challenging tasks, the dynamic view alone may be insufficient, so
we use the extrinsic features to select a specialised intrinsic classifier C trained
only on the subset of training instances with the same extrinsic features. This is
a novel approach, and we will explain it in detail in the next section.

The task of semi-automatically generating semantic annotation for Web Ser-
vices serves as a motivating example and case study. The basic idea behind our
approach is that Web Service descriptions are structured objects, and that there
are dependencies between the components of these objects that we can exploit.
In previous work [8], we used a Bayesian setting and evaluated it on Web forms.
In this paper, we present an iterative classification algorithm similar to the one
introduced by Neville and Jensen in [10].

2 Semantic Web Services

We have built a tool that learns from Web Services with existing semantic anno-
tation and provides the user with annotation recommendations in an interactive
fashion. We present this application called ASSAM1 in greater detail in [7].

The predictions made by an algorithm that classifies parts of Web Services
do not have to be perfectly accurate to be helpful. In fact, the classification task
is quite hard, because the domain ontologies can be very large. But for that
reason it is very helpful for a human annotator if he or she could choose only
between a small number of ontological concepts rather than from the full domain
ontology. In previous work [8] we have shown that the category of a service can
be reliably predicted, if we stipulate merely that the correct concept be one of
the top few (e.g., three) suggestions.

Before describing our approach in detail, we begin with some terminology.
Our terminology is a bit different from the terminology used in Web Services and
Semantic Web description languages, but by introducing this terminology we do
not intend to advocate a new standard. Instead we believe that our approach is
generic and independent of the actual format used for the semantic Web Service
description. However, in the application that we have built the input consists of
Web Services in the Web Service Description Language (WSDL [3]) format, and
the final annotations can be exported as OWL-S [12].

A WSDL Web Service corresponds in many ways to a set of methods in
any programming language. The equivalent of a method is called an operation.
Operations can have input, output and fault messages. This corresponds to a
method’s parameters, return values and possible exceptions. A single parameter
in WSDL is called a part in a message. It is also possible to make use of complex
types defined in XML Schema. This corresponds to a structure in a typical
programming language.

We use the word category to denote the semantic meaning of the service as
a whole. For example, the Amazon Web Service belongs to the “book selling”
category. The category ontology corresponds to a profile hierarchy in OWL-S.
1 Automated Semantic Service Annotation with Machine learning



We use the word domain to denote the semantic meaning of an operation. For
example, a particular operation in the Amazon Web Service called “QueryAu-
thor” would belong to the “Query books by author name” domain. An operation
in WSDL usually maps to an atomic process in OWL-S, but there is no direct
relation between the domain of an operation and OWL-S, as atomic processes
are only characterised through their inputs, outputs, preconditions and effects.
One could think of the domain as describing the semantics of the preconditions
and effects, but we currently do not use the domain annotation for our OWL-S
export.

We use the word datatype to denote the semantic type of a single variable.
This applies to message parts as well as complex types. This usage of the word
datatype is consistent with how the word is used when describing a property in an
ontology, but should not be confused with low-level syntactic datatypes such as
“integer” or “string”. For example, the input parameter for the “QueryAuthor”
operation mentioned above would be of the datatype “author”.

For information retrieval or classification tasks the objects that are classified
or searched are also referred to as documents. When we use the word document,
we mean the Web Service as whole as represented by its WSDL. We use docu-
ment part to denote an object within the Web Service that we want to classify:
Operations, input and output messages, XML schema types etc. are document
parts or object components.

3 Iterative Ensemble Classification

Following [10], we distinguish between intrinsic, static extrinsic and dynamic
extrinsic features. In contrast to [10], we assume that the object graph has
more than one connected component. In our example, we have one connected
component for each Web Service.

Static intrinsic features are attributes that are inherent to the component
that is to be classified. We denote the static intrinsic features for a component j
as aj . Dynamic extrinsic features derive from the relationship between different
components. We denote dynamic extrinsic features as bj . In our Web Services
dataset, we use the class labels of linked components as dynamic extrinsic fea-
tures. Static extrinsic features are based on other components, but do not change
when more classifications are made. Static extrinsic features are static intrinsic
features of linked components. When we speak of extrinsic features in the re-
maining sections, we usually mean dynamic extrinsic features if not otherwise
stated.

Initially, when the adjacent objects are unlabeled, the dynamic extrinsic fea-
tures are unknown. In the first pass classifications are made based on the in-
trinsic features only. In subsequent iterations we include extrinsic features that
are based on the class labels predicted in the previous round. The classification
process is repeated until a certain termination criterion (e.g. either convergence
or a fixed number of iterations) is met.



Our iterative algorithm differs in some points from Neville and Jensen’s al-
gorithm. In their approach, one single classifier is trained on all (intrinsic and
extrinsic) features. In a variety of tasks, ensembles of several classifiers have
been shown to be more effective (e.g., [4]). For this reason, we train two separate
classifiers, one on the intrinsic features (“A”) and one on the extrinsic features
(“B”), and vote together their predictions. Another advantage of combining the
evidence in that way is that the classifier cannot be mislead by missing fea-
tures in the beginning when the extrinsic features are yet unknown, because the
classifier trained on the extrinsic features is simply not used for the first pass.

Specialised classifiers. This split approach, where the A and B classifiers are
combined using voting, works best, when both views would by themselves be
sufficient to make a prediction. This intuition is the same as behind Co-Training
[1]. However, in more challenging prediction tasks, the extrinsic view alone gives
additional evidence, but is not sufficient to make a prediction. In our Web Ser-
vices dataset, this is the case on the datatype level. The fact that a Web Service
belongs to the “book selling” category is by itself not sufficient to classify its
input parameters, but the information is still useful. We therefore introduce a
second mode for incorporating the extrinsic features: We train a set of classifiers
on the intrinsic features of the components, but each of them is only trained on
the subset of the instances that belong to one specific class. In our setting, we
train specialised classifiers on the datatypes level on all instances that belong to
the same category2.

To formally specify these specialised classifiers, we first define what we mean
by a specialisation. We take a very generic view: the k’th specialisation for
component j is formally just a set Φk

j of instances of component j that satisfy
the specialisation.

In our example, if component j represents a parameter, then one Φk
j might

be “all parameters of services that are in the ‘book selling’ category.”
We require that all specialisations for j be mutually exclusive and exhaustive.

Let φk
j (bj) = 1 if there exists an instance in Φk

j with extrinsic features bj , and
0 otherwise. Mutually exclusiveness and exhaustivity means simply that ∀j :∑

k φk
j (bj) = 1.

The specialisation Φk
j is used to define a set of training data for learning a

specialised classifier Ck
j . Specifically, Ck

j is trained on the aj features for every
training instance of component j in Φk

j .
To avoid biasing the algorithm too strongly, we still combine the results of

the C classifier with the A classifier in each iteration. For each level we use either
the B or C classifier, but not both. We chose the C method for the datatypes
and the B method for the category and the domain.

2 To avoid over-specialisation, these classifiers are actually not trained on instances
from a single category, but rather on instances from a complete top-level branch of
the hierarchically organised category ontology. Note that this is the only place where
we make use of the fact that the class labels are organised as an ontology, and we
do not do any further inference.



Algorithm 1 Iterative Ensemble Classification
for j ← 1 . . . n do

αj ← predictions made by Aj with features aj

end for
(b1, . . . , bn)← (α1, . . . , αn)
for a fixed number of iterations do

for j ← 1 . . . n do
βj ← predictions made by Bj or Cj with features bj

πj ← αj ∗ βj

end for
(b1, . . . , bn)← (π1, . . . , πn)

end for
return (π1, . . . , πn)

A1 B1

a1

π1

α1 β1

αn

βnan

b1

prediction for component 1

C1or

select C1k

based on b1

Bn

πn

prediction for component n

CnorAn
bn

select Cnk

based on bn

Fig. 1. Iterative Ensemble Classification.

Algorithm 1 explains our iterative classification ensemble, and Fig. 1 illus-
trates its classification phase. In Fig. 1 and algorithm 1, let n denote the number
of object components; aj the static and bj the dynamic features; Aj and Bj the
intrinsic and extrinsic classifiers, and Ck

j denotes a specialised classifier as dis-
cussed above. αj denotes the predictions made by Aj and βj the predictions
made by the extrinsic classifier Bj resp. Ck

j .

4 Related Work

Several variations of link-based text classification have been proposed. The clas-
sical task here is to classify web pages connected by hyperlinks. Lu and Getoor
address this task in [9]. They cast the problem as predicting the classes of objects
or nodes in a graph considering links between objects or edges in the graph. How-
ever, in their model only one flavour of objects exists: the classes for all objects
are drawn from only one ontology. Iterative classification algorithms were also



used by Chakrabarti [2] before. We already mentioned the approach by Neville
and Jensen [10].

Although not mentioned explicitly, our C approach is used by Finn and Kush-
merick [6] for information extraction. They use a two-level learning approach.
At the first level (L1), each token in a document is predicted either as the start
of a text fragment to extract, or not. L1 is trained on all available data. A sec-
ond classifier (L2) is then used to identify the end of a fragment, given that its
start was predicted by L1. L2 is trained on just the subset of the training data,
namely a window of tokens near field starting positions. In our terminology, the
L2 classifier is a specialised classifier C, and the L1 predictions are used to decide
when to invoke L2, just as we use extrinsic features to select the appropriate C.

Clearly, our approach is related to ensemble learning (e.g. [4]). We have used
ensemble learning in a non-iterative fashion for classifying the category of a web
service in our earlier paper [8]. Another well-known way to combine the output
of multiple classifiers is stacked generalization [14]. We already mentioned Co-
Training [1] shortly; however, note that our data is fully labeled.

Related Work in the Web Services Area. As far as we are aware, we were the
first to propose the use of machine learning for the task of semi-automatically
annotating Semantic Web Services. However, this task could also be viewed as a
schema matching problem. Patil et al [11] are working on matching XML schemas
to ontologies. They use a combination of lexical and structural similarity mea-
sures. They assume that the user’s intention is not to annotate similar services
with one common ontology, rather they also address the problem of choosing
the right domain ontology among a set of ontologies. The Web Service search
engine Woogle [5] allows not only for keyword queries, but also for searching
structurally similar operations.

5 Parameters

In an iterative feed-back setting such as ours, a sensible choice of all parameters
is both crucial and rewarding: An improvement in one of the classifiers can lead
to an improvement in other classifiers as well. In some respects the parameters
we discuss here are relevant not only to our specific setting, but are common to
all iterative classification algorithms. The important parameters are:

1. Structure: Which layers of the model are used for feedback and how?
2. Voting: How are the results of the different views combined?
3. Termination criterion: What number of iterations is optimal?
4. Inference, Constraints: Use information from the class ontologies?
5. Features: Use binary or continuous features?
6. Classification algorithms: Which one to use?

Structure. One might expect that this structure is inherent to the problem,
but this is only partly true. In our Web Services dataset, we have identified



three layers of semantic metadata, as described in section 1: the category of the
service as a whole, the domain of the service’s operations and the datatypes of
its input and output parameters. This leaves a variety of possible choices how
the feed-back is actually performed. One might say that the category of a service
is determined by the domain of its operations, and the domain of the operations
is determined by the datatypes of its input and output parameters. But it is
also possible to see it the other way around: The datatypes of an operation’s
parameters are dependent on the operation’s domain, which is dependent on the
service’s category. Instead of choosing either a top-down or bottom-up approach,
our framework also allows for modeling both dependencies at the same time.

Preliminary tests showed that it is not guaranteed that using as many ex-
trinsic features as possible automatically yields the best results. It is best to
choose between either the B or C classifier based on the nature of the extrinsic
view: If the extrinsic view alone provides enough information to make a reliable
prediction, it is best to combine the extrinsic and intrinsic view in an ensemble
way. If the extrinsic view alone is not sufficient for a reliable classification, it is
better to use the C classifier. There are, however, two points that are important
when considering the C classifier: Using a set of specialised classifiers means that
there are as many classifiers as there are distinct class labels in the extrinsic view
and each classifier is only trained on a subset of the available training data. To
have a set of many classifiers can not only be computationally expensive, it also
means that the number of training instances for each classifier is only a fraction
of the total number of training instances.

We used static extrinsic features on the do-
Service

Category

Messages
Datatypes

C

Operations
Domains

B

B add

add

Fig. 2. Feedback structure.

main and datatype level by incorporating text from
children nodes: Text associated with messages was
added to the text used by the operations classi-
fier, and text associated with elements of complex
types were added to the text used by the datatype
classifier classifying the complex type itself. Note
that this appears to contradict our earlier results
[8], where we claimed that simply adding text
from child nodes does not help. In [8], we where
classifying the category level only, and the bag of
words for the domain and datatype classifiers con-
sisted of text for all operations/datatypes in that
service. In our present experiment, the classifier for the operations and datatypes
classify one single operation or parameter only, and in this case it apparently
helps to add more text.

Given these arguments for and against the different modes of incorporating
the extrinsic evidence and some empirical preliminary tests, we eventually de-
cided to use the setup shown in Fig. 2, where “add” denotes the use of static
extrinsic features by incorporating text.

Combining Static and Dynamic Features. One of the fundamental differences
between our approach and the original algorithm by Neville and Jensen is the



way the different views—i.e., the intrinsic and extrinsic features—are combined.
Neville and Jensen’s approach is to add the extrinsic features as additional at-
tributes in a stacking-like fashion and train a single classifier on all features.
Neville and Jensen tested their algorithm on a low-dimensional dataset. On our
dataset, however, this way of combining the evidence of the static and dynamic
features did not work. In section 6 we also report results for a setup that com-
bines static and dynamic features in this “non-ensemble” way. We conclude that
this is due to fact that both the static and the dynamic features are quite high-
dimensional, and that the initial noise in the dynamic features strongly affects
the overall performance of the classifier.

Number of Iterations. The iterative classification is not guaranteed to converge,
and it is also not guaranteed that more iterations always produce better results,
as the predictions might get stuck in a local maximum. We tried several fixed
numbers of iterations in preliminary experiments, and eventually decided to
terminate the classification process after five iterations.

Inference and Constraints. In our Web Services dataset as well as in many other
relational learning tasks, the class labels are not arbitrary but rather they are
organised as an ontology. This ontology could be a simple hierarchical structure,
but it could also convey more complex constraints. In our datatypes ontology, it
would be possible to model restrictions on the relations between complex types
and their elements. For example, a complex type that represents a book in the
datatypes ontology can only have elements that are assigned a class label that
represents a property of book in the ontology.

In the present setting we do not make use of constraints that can be in-
ferred from the ontology, with one exception. As mentioned in section 3, we
use the hierarchy in the services ontology to prevent over-specialisation of the
C classifiers. However, we believe that the use of inference that can be derived
from the ontologies where the class labels are drawn from could greatly increase
classification accuracy. We will investigate this in future work.

Features. The well-known range of choices for representing words in a bag-of-
words model as features in a classifier includes binary features, term frequency
and TFIDF. In our case, we also have to choose a suitable representation for
the extrinsic features. We can choose between a single feature denoting the most
common linked class or use a feature vector with one element per possible class.
When using the latter, the feature vector can be binary or frequency based. It
is also possible to use the complete ranked distribution or the top n of classes
as output by the classifiers instead of just the absolute predictions.

In our experiments, using a single feature for the extrinsic view does not
make much sense, as we are using a separate classifier for the dynamic view. In
preliminary experiments, using the complete ranked distributions did not work.
We believe that this is due to the fact that in conjunction with the base clas-
sification algorithm we used and the one-vs-all setting, the absolute confidence



values in the ranked distribution are too close together, and that then combining
the distributions for all linked objects introduces too much noise.

We decided to use a binary feature vector with one attribute per possible
linked class for the dynamic features. For the static features, we decided to
use binary features as well. In section 3, we already described another method
of incorporating dynamic extrinsic features, the specialised classifiers, and the
possibility to add terms from linked document parts as a way to use static
extrinsic features.

Classification algorithms. Due to the large number of classifiers and evaluations
in our iterative framework, it is desirable to use a fast classification algorithm,
especially if the intended application requires user interaction and low response-
times are necessary.

In our implementation we are using the Weka library of classifiers [13] off the
shelf. For our experiments we chose the HyperPipes algorithm in a one-against-
all configuration, as it offered a good tradeoff between speed and accuracy. We
did not use the SMO algorithm because it turned out to be computationally
much more expensive.

6 Evaluation

We evaluated our algorithm using a leave-one-service-out methodology. We com-
pared it against a baseline classifier with the same setup for the static features,
but without using the dynamic extrinsic features.

To determine the upper bound of improvement that can be achieved using
the extrinsic features, we tested our algorithm with the correct class labels given
as the extrinsic features. This tests the performance of predicting a class label
for a document part when not only the intrinsic features but also the dynamic
features (the labels for all other document parts) are known. Following [10], we
refer to this upper bound as the “ceiling”.

We also compared it against a non-ensemble setup, where the extrinsic fea-
tures are not added using a separate classifier but rather are just appended to
the static features. Classification is then done with a single classifier. This setup
closely resembles the original algorithm proposed by Neville and Jensen. Again,
the same set of static features was used.

In the evaluation we ignored all classes with one or two instances, such as
occurred quite frequently on the datatype level. The distributions are still quite
skewed and there is a large number of classes. There are 22 classes on the category
level, 136 classes on the domain level and 312 classes on the datatype level. Our
corpus consists of 164 services with a total of 1138 annotated operations and
5452 annotated parameters.

Fig. 3 shows the accuracy for categories, domains and datatypes. As men-
tioned earlier, in mixed-initiative scenario such as our semi-automated ASSAM
tool, it is not necessary to be be perfectly accurate. Rather, we strive only to
ensure that that the correct ontology class is in the top few suggestions. We



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

A
cc

u
ra

cy

Tolerance, Category

Baseline

3

3
3 3 3

3

3

Ensemble

+

+
+

+ + +

+
Ceiling

2

2
2

2
2 2

2

NE
×

×

×

×

×
×

×
NE Ceiling

4

4
4 4 4 4

4
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Domain

3

3

3
3

3
3

+

+
+

+
+

+

2

2

2
2 2 2

×

× × × × ×
4

4
4
4
4 4

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Datatypes

3

3

3
3

3
3

+

+

+
+

+
+

2

2

2

2
2

2

×
×
×
×
× ×

4

4

4

4
4
4

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
1

Tolerance, Category

Baseline

3

3
3 3

3 3

3

Ensemble

+

+
+

+
+ +

+
Ceiling

2

2
2

2
2

2

2

NE×

×
×

×

×
×

×
NE Ceiling

4

4
4
4 4 4

4
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Domain

3

3

3
3 3 3

+

+
+ + + +

2

2

2
2 2 2

×

×
× × × ×

4

4

4
4
4 4

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Datatypes

3

3

3

3
3

3

+

+

+

+ + +

2

2

2

2

2 2

×
×
×
×
× ×

4

4

4

4
4
4

Fig. 3. Accuracy and macroaveraged F1 on the three ontologies.

therefore show how the accuracy increases when we allow a certain tolerance.
For example, if the accuracy for tolerance 9 is 0.9, then 90% of the time, the cor-
rect prediction is within the top 10 of the ranked predictions. Note that on the
datatypes level, macroaveraged F1 (as shown in Fig. 3) for the iterative ensemble
is worse than for the baseline while accuracy is still above the baseline. This is



due to the fact that at this level of tolerance the baseline has a higher recall
for many small classes. Macroaveraged precision is still higher for the iterative
ensemble.

Note that on the category level incorporating the additional evidence from
the extrinsic features does not help. In fact, for some tolerance values the ceiling
accuracy is even worse than the baseline.

Also, we could not achieve good results with the non-ensemble setup (denoted
as “NE”). This setup scored worse than the baseline. For the datatypes, even
the ceiling accuracy (denoted as “NE Ceiling”) was below the baseline.

On the datatype level, our algorithm achieves 31.2% accuracy, where as the
baseline scores only at 24.5%. Thus, our algorithm improves performance by al-
most one third. The overall performance might be considered quite low, but due
to the high number of classes it is a very hard classification problem. Given that
in two of three cases the user has to choose only between 10 class labels rather
than between all 312 labels in the datatype ontology we are still convinced that
this could save a considerable amount of workload. We evaluated the statisti-
cal significance of the accuracy improvement of our algorithm with a Wilcoxon
Matched-Pairs Signed-Ranks Test. Our algorithm performs significantly better
(p < 0.001).

On the domain level, our approach increases the accuracy for exact matches
from 26.3% to 28%. This is statistically significant (p < 0.05) according to a
Wilcoxon Test. For both significance tests we performed a 20-fold random split.

7 Conclusion

We have demonstrated two extensions to prior research on iterative classification
algorithms for relational tasks. First, we have shown that in a high-dimensional
environment such as text classification it is better to use separate classifiers for
the intrinsic and extrinsic features and vote their predictions rather than to use
one classifier trained on both types of features. Second, we have introduced a
new mode for relational classification where the extrinsic features serve as a
selector for a specialised intrinsic classifier trained on a subset of the training
instances. We have applied these techniques to the domain of semi-automatically
annotating Semantic Web Services, and shown that it outperforms conventional
approaches.

Future Work. As mentioned, we believe that incorporating domain knowledge
in the classification process can increase the overall performance. In future work
we will investigate the use of inference over the ontology and how it can help the
machine learning algorithm. In particular, currently we ignore the hierarchical
structure of the class labels, but we will explore whether this structure can
be exploited to improve prediction accuracy. On the application side, we will
continue to improve our WSDL annotator tool. We believe that tools such as
ours are needed to bootstrap the Semantic Web and Semantic Web Services, and
that machine learning is a very helpful technique that should be applied here.



Acknowledgments. This research was supported by grants SFI/01/F.1/C015
from Science Foundation Ireland, and N00014-03-1-0274 from the US Office of
Naval Research. We thank Martina Naughton, Jessica Kenny, Wendy McNulty
and Andrea Rizzini for helping us manually annotating the corpus of Semantic
Web Services used in our evaluation. Thanks to Rinat Khoussainov and Thomas
Gottron for helpful discussions.

References

1. Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-
training. In COLT: Proceedings of the Workshop on Computational Learning The-
ory, San Francisco, 1998. Morgan Kaufmann.

2. Soumen Chakrabarti, Byron E. Dom, and Piotr Indyk. Enhanced hypertext cat-
egorization using hyperlinks. In Laura M. Haas and Ashutosh Tiwary, editors,
Proceedings of SIGMOD-98, ACM International Conference on Management of
Data, pages 307–318, Seattle, US, 1998. ACM Press, New York, US.

3. Erik Christensen, Francisco Curbera, Greg Meredtih, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. World Wide Web Consortium,
2001.

4. T. G. Dietterich. Ensemble methods in machine learning. In Lecture Notes in
Computer Science, volume 1857.

5. Xin Dong, Alon Havey, Jayant Madhavan, Ema Nemes, and Jun Zhang. Similarity
search for web services. In Proceedings of the 30th VLDB Conference, Toronto,
Canada, 2004.

6. Aidan Finn and Nicholas Kushmerick. Multi-level boundary classification for infor-
mation extraction. In Proceedings of the European Conference on Machine Learn-
ing, Pisa, 2004.

7. Andreas Heß, Eddie Johnston, and Nicholas Kushmerick. ASSAM: A tool for
semi-automatically annotating semantic web services. Submitted to the 3rd Inter-
national Semantic Web Conference, 2004.

8. Andreas Heß and Nicholas Kushmerick. Learning to attach semantic metadata to
web services. In Proceedings of the 2nd International Semantic Web Conference,
2003.

9. Qing Lu and Lise Getoor. Link-based classification. In Int. Conf. on Machine
Learning, Washington, D.C., August 2003.

10. Jennifer Neville and David Jensen. Iterative classification in relational data. In
Proceedings of the AAAI 2000 Workshop Learning Statistical Models from Rela-
tional Data, pages 42–49. AAAI Press, 2000.

11. Abhijit Patil, Swapna Oundhakar, Amit Sheth, and Kunal Verma. Meteor-s web
service annotation framework. In Proceedings of the 13th International World Wide
Web Conference, New York, USA, May 2004.

12. The DAML services coalition. Owl-s 1.0. White Paper, 2003.
13. I. H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools with

Java Implementations. Morgan Kaufmann, San Francisco, 1999.
14. David H. Wolpert. Stacked generalization, 1990.


