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Abstract. Emerging Web standards promise a network of heteroge-
neous yet interoperable Web Services. Web Services would greatly sim-
plify the development of many kinds of data integration and knowl-
edge management applications. Unfortunately, this vision requires that
services describe themselves with large amounts of semantic metadata
“glue”. We explore a variety of machine learning techniques to semi-
automatically create such metadata.

We make three contributions. First, we describe a Bayesian learning
and inference algorithm for classifying HTML forms into semantic cat-
egories, as well as assigning semantic labels to the form’s fields. These
techniques are important as legacy HTML interfaces are migrated to
Web Services. Second, we describe the application of the Naive Bayes
and SVM algorithms to the task of Web Service classification. We show
that an ensemble approach that treats Web Services as structured objects
is more accurate than an unstructured approach. Finally, we describe a
clustering algorithm that automatically discovers the semantic categories
of Web Services. All of our algorithms are evaluated using large collec-
tions of real HTML forms and Web Services.

1 Introduction

Emerging Web standards such as WSDL [w3.org/TR/wsdl], SOAP [w3.org/-
TR/soap], UDDI [uddi.org] and DAML-S [www.daml.org/services] promise an
ocean of Web Services, networked components that can be invoked remotely us-
ing standard XML-based protocols. For example, significant e-commerce players
such as Amazon and Google export Web Services giving public access to their
content databases.

The key to automatically invoking and composing Web Services is to as-
sociate machine-understandable semantic metadata with each service. A cen-
tral challenge to the Web Services initiative is therefore a lack of tools to
(semi-)automatically generate the necessary metadata. We explore the use of
machine learning techniques to automatically create such metadata from train-
ing data. Such an approach complements existing uses of machine learning to
facilitate the Semantic Web, such as for information extraction [7, 9, 3] and for
mapping between heterogeneous data schemata [5].

The various Web Services standards involve metadata at various levels of ab-
straction, from high-level advertisements that facilitate indexing and matching



relevant services, to low-level input/output specifications of particular opera-
tions. The various metadata standards are evolving rapidly, and the details of
current standards are beyond the scope of this paper. Rather than committing to
any particular standard, we investigate the following three sub-problems, which
are essential components to any tool for helping developers create Web Services
metadata.

1. To automatically invoke a particular Web Service operation, metadata is
needed to indicate the overall “domain” of the operation, as well as the se-
mantic meaning of each of the operation’s input parameters. For example,
to enable automatic invocation of a Web Service operation that queries an
airline’s timetable, the operation must be annotated with metadata indicat-
ing that the operation does indeed relate to airline timetable querying, and
each parameter must be annotated with the kind of data that should be
supplied (departure date, time and airport, destination airport, return date,
number of passengers, etc). In Sec. 2, we propose to automatically assign

a Web Form to a concept in a domain taxonomy, and to assign each input

parameter to a concept in a data-type taxonomy.

2. A Web Service is a collection of operations, and Web Services must be
grouped into coherent “categories” of services supporting similar operations.
For example, many airlines may each export a Web Service that supports
similar operations such as querying for flights, checking whether a flight is
delayed, checking a frequent-traveller account balance, etc. To enable the
retrieval of appropriate Web Services, in Sec. 3 we describe techniques to
automatically assign a Web Service to a concept in a category taxonomy.

3. Finally, when Web Services are widely deployed, it may well be infeasible
to agree a category taxonomy in advance. We therefore propose in Sec. 4 to
cluster Web Services in order to automatically create a category taxonomy.

Fig. 1 describes the relationship between the category, domain and datatype
taxonomies that motivate our research. In more detail, our work can be char-
acterized in terms of the following three levels of metadata. First, we assume
a category taxonomy C. The category of a Web Service describes the general
kind of service that is offered, such as “services related to travel”, “information
provider” or “business services”. Second, we assume a domain taxonomy D. Do-
mains capture the purpose of a specific service operation, such as “searching for
a book”, “finding a job”, “querying a airline timetable”, etc. Third, we assume
a datatype taxonomy T . Datatypes relate not to low-level encoding issues such
as “string” or “integer”, but to the expected semantic category of a field’s data,
such as “book title”, “salary”, “destination airport”, etc.

A fundamental assumption behind our work is that there are interdepen-
dencies between a Web Service’s category, and the domains and datatypes of
its operations. For example, a Web Service in the “services related to travel”
category is likely to support an operation for “booking an airline ticket”, and an
operation for “finding a job” is likely to require a “salary requirement” as input.
The structure of Fig. 1 indicates the main ways in which these constraints inter-
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Fig. 1. A Web Service’s category is dependent on the domains and datatypes of its
operations.

act. The edges of the graph indicate conditional probabilities between entities,
or the flow of evidence.

Finally, the boxes in Fig. 1 indicate the actual algorithms that we describe
in this paper. As indicated above, in Sec. 2 focuses on the domain and datatype
taxonomies, while Secs. 3–4 focus on the category taxonomy. Note that we do not
exploit the additional evidence that the category gives us for the classification
at the domain and datatype level. As part of our future work, we intend to
exploit this connection, as well as additional evidence (e.g., the data actually
sent to/from the Web Service).

2 Supervised Domain and Datatype Classification

We begin by describing an algorithm for classifying HTML forms into semantic
categories, as well as assigning semantic labels to each form field. These tech-
niques are important as legacy HTML interfaces are migrated to Web Services.

2.1 Problem formulation

Web form instances are structured objects: a form comprises one or more fields,
and each field in turn comprises one or more terms. More precisely, a form Fi is
a sequence of fields, written Fi = [f1

i , f2
i , . . .], and each field f j

i is a bag of terms,

written f j
i = [tji (1), tji (2), . . .].

The Web form learning problem is as follows. The input is set of labeled
forms and fields; that is, a set {F1, F2, . . .} of forms together with a domain
Di ∈ D for each form Fi, and a datatype T j

i ∈ T for each field f j
i ∈ Fi. The



output is a form classifier; that is, a function that maps an unlabeled form Fi,
to a predicted domain Di ∈ D, and a predicted datatype T j

i ∈ T for each field

f j
i ∈ Fi.

We assume a domain taxonomy D and a datatype taxonomy T . We use
SmallCaps to indicate domains, so we might have D = {SearchBook,Find-
Job, QueryFlight, . . .}. SansSerif style indicates datatypes, so we might have
T = {BookTitle, Salary, DestAirport, . . .}.

2.2 Generative Model

Our solution to the Web form classification is based on a stochastic generative
model of a hypothetical “Web service designer” creating a Web page to host a
particular service. First, the designer first selects a domain Di ∈ D according
to some probability distribution Pr[Di]. For example, in our experiments, forms
for finding books were quite frequent relative to forms for finding colleges, so
Pr[SearchBook] � Pr[FindCollege].

Second, the designer selects datatypes T j
i ∈ T appropriate to Di, by draw-

ing from some distribution Pr[T j
i |Di]. For example, presumably Pr[BookTitle|

SearchBook] � Pr[DestAirport|SearchBook], because services for finding
books usually involve a book’s title, but rarely involve airports. On the other
hand, Pr[BookTitle| QueryFlight] � Pr[DestAirport|QueryFlight].

Finally, the designer writes the Web page that implements the form by coding
each field in turn. More precisely, for each selected datatype T j

i , the designer uses

terms tji (k) drawn according to some distribution Pr[tji (k)|T j
i ]. For example,

presumably Pr[title|BookTitle] � Pr[city|BookTitle], because the term title

is much more likely than city to occur in a field requesting a book title. On the
other hand, presumably Pr[title|DestAirport] � Pr[city|DestAirport].

2.3 Parameter Estimation

The learning task is to estimate the parameters of the stochastic generative
model from a set of training data. The training data comprises a set of N Web
forms F = {F1, . . . , FN}, where for each form Fi the learning algorithm is given
the domain Di ∈ D and the datatypes T j

i of the fields f j
i ∈ Fi.

The parameters to be estimated are the domain probabilities P̂r[D] for D ∈
D, the conditional datatype probabilities P̂r[T |D] for D ∈ D and T ∈ T , and the
conditional term probabilities P̂r[t|T ] for term t and T ∈ T . We estimate these
parameters based on their frequency in the training data: P̂r[D] = NF (D)/N ,
P̂r[T |D] = MF(T, D)/MF(D), and P̂r[t|T ] = WF (t, T )/WF(T ), where NF(D)
is the number of forms in the training set F with domain D; MF(D) is the total
number of fields in all forms of domain D; MF(T, D) is the number of fields of
datatype T in all forms of domain D; WF (T ) is the total number of terms of all
fields of datatype T ; and WF (t, T ) is the number of occurrences of term t in all
fields of datatype t.



Fig. 2. The Bayesian network used to classify a Web form containing three fields.

2.4 Classification

Our approach to Web form classification involves converting a form into a
Bayesian network. The network is a tree that reflects the generative model:
a root node represents the form’s domain, children represent the datatype of
each field, and grandchildren encode the terms used to code each field.

In more detail, a Web form to be classified is converted into a three-layer
tree-structured Bayesian network as follows. The first (root) layer contains just
a single node domain that takes on values from the set of domains D. The
second layer consists of one child datatypei of domain for each field in the
form being classified, where each datatypei take on values from the set T .

The third (leaf) layer comprises a set of children {term1
i , . . . , term

K
i } for

each datatypei node, where K is the number of terms in the field. The term
nodes take on values from the vocabulary set V , defined as the set of all terms
that have occurred in the training data.

Fig. 2 illustrates the network that would be constructed for a form with three
fields and K terms for each field. (Each field contains the same number K of
terms/field for simplicity; in fact, the number of term nodes reflects the actual
number of terms in the parent field.)

The conditional probability tables associated with each node correspond
directly to the learned parameters mentioned earlier. That is, Pr[domain =
D] ≡ P̂r(D), Pr[datatypei = T |domain = D] ≡ P̂r(T |D), and Pr[termk

i =
t|datatypei=T ] ≡ P̂r(t|T ). Note that the conditional probabilities tables are
identical for all datatype nodes, and for all term nodes.

Given such a Bayesian network, classifying a form Fi = [f1
i , f2

i , . . .] involves
“observing” the terms in each field (i.e., setting the probability Pr[termk

i =
tji (k)] ≡ 1 for each term tji (k) ∈ f j

i ), and then computing the maximum-
likelihood form domain and field datatypes consistent with that evidence.



Domain taxonomy D and number of forms for each domain
SearchBook (44) FindCollege (2) SearchCollegeBook (17)
QueryFlight (34) FindJob (23) FindStockQuote (9)

Datatype taxonomy T (illustrative sample)
Address NAdults Airline Author BookCode BookCondition BookDetails
BookEdition BookFormat BookSearchType BookSubject BookTitle NChildren City

Class College CollegeSubject CompanyName Country Currency DateDepart
DateReturn DestAirport DestCity Duration Email EmployeeLevel . . .

Fig. 3. Subsets of the domain and datatype taxonomies used in the experiments.

2.5 Evaluation

We have evaluated our approach using a collection of 129 Web forms compris-
ing 656 fields in total, for an average of 5.1 fields/form. As shown in Fig. 3,
the domain taxonomy D used in our experiments contains 6 domains, and the
datatype taxonomy T comprises 71 datatypes.

The forms were manually gathered by manually browsing Web forms indices
such as InvisibleWeb.com for relevant forms. Each form was then inspected by
hand to assign a domain to the form as a whole, and a datatype to each field.

After the forms were gathered, they were segmented into fields. We discuss
the details below. For now, it suffices to say that we use HTML tags such as
<input> and <textarea> to identify the fields that will appear to the user
when the page is rendered. After a form has been segmented into fields, certain
irrelevant fields (e.g., submit/reset buttons) are discarded. The remaining fields
are then assigned a datatype.

A final subtlety is that some fields are not easily interpreted as “data”, but
rather indicate minor modifications to either the way the query is interpreted,
or the output presentation. For example, there is a “help” option on one search
services that augments the requested data with suggestions for query refinement.
We discarded such fields on a case-by-case basis; a total of 12.1% of the fields
were discarded in this way.

The final data-preparation step is to convert the HTML fragments into the
“form = sequence of fields; field = bag of terms” representation. The HTML is
first parsed into a sequence of tokens. Some of these tokens are HTML field tags
(e.g., <input>, <select>, <textarea>). The form is segmented into fields by
associating the remaining tokens with the nearest field. For example, “<form> a

<input name=f1> b c <textarea name=f2> d </form>” would be segmented
as “a <input name=f1> b” and “c <textarea name=f2> d”.

The intent is that this segmentation process will associate with each field a
bag of terms that provides evidence of the field’s datatype. For example, our
classification algorithm will learn to distinguish labels like “Book title” that
are associated with BookTitle fields, from labels like “Title (Dr, Ms, . . . )” that
indicate PersonTitle.

Finally, we convert HTML fragments like “Enter name: <input name=name1

type=text size=20> <br>” that correspond to a particular field, into the field’s
bag of terms representation. We process each fragment as follows.



First, we discard HTML tags, retaining the values of a set of “interesting”
attributes, such as an <input> tag’s name attribute. The result is “Enter name:

name1”. Next, we tokenize the string at punctuation and space characters, con-
vert all characters to lower case, apply Porter’s stemming algorithm [11], discard
stop words, and insert a special symbol encoding the field’s HTML type (text,
select, radio-button, etc). This yields the token sequence [enter, name, name1,
TypeText]. Finally, we apply a set of term normalizations, such as replacing
terms comprising just a single digit (letter) with a special symbol SingleDigit

(SingleLetter), and deleting leading/trailing numbers. In this example the final
result is the sequence [enter, name, name, TypeText].

2.6 Results

We begin by comparing our approach to two simple bag of terms baselines using a
leave-one-out methodology. For domain classification, the baseline uses a single
bag of all terms in the entire form. For datatype classification, the baseline
approach is the naive Bayes algorithm over its bag of terms.

For domain prediction, our algorithm has an F1 score of 0.87 while the base-
line scores 0.82. For datatype prediction, our algorithm has an F1 score of 0.43
while the baseline scores 0.38. We conclude that our “holistic” approach to form
and field prediction is more accurate than a greedy baseline approach of making
each prediction independently.

While our approach is far from perfect, we observe that form classification
is extremely challenging, due both to noise in the underlying HTML, and the
fact that our domain and datatype taxonomies contain many classes compared
to traditional (usually binary!) text classification tasks.

While fully-automated form classification is our ultimate goal, an imperfect
form classifier can still be useful in interactive, partially-automated scenarios in
which a human gives the domain or (some of) the datatypes of a form to be
labelled, and the classifier labels the remaining elements.

Our first experiment measures the improvement in datatype prediction if the
Bayesian network is also provided as evidence the form’s domain. In this case
our algorithm has an F1 score of 0.51, compared to 0.43 mentioned earlier.

Our second experiment measures the improvement in domain prediction if
evidence is provided for a randomly chosen fraction α of the fields’ datatypes,
for 0 ≤ α ≤ 1. α = 0 corresponds to the fully automated situation in which no
datatype evidence is provided; α = 1 requires that a person provide the datatype
of every field. As shown in Fig. 4, the domain classification F1 score increases
rapidly as α approaches 1.

Our third investigation of semi-automated prediction involves the idea of
ranking the predictions rather than requiring that the algorithm make just one
prediction. In many semi-automated scenarios, the fact that the second- or third-
ranked prediction is correct can still be useful even if the first is wrong. To
formalize this notion, we calculate F1 based on treating the algorithm as correct
if the true class is in the top R predictions as ranked by posterior probability.
Fig. 4 shows the F1 score for predicting both domains and datatypes, as a
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Fig. 4. F1 as a function of (left) the fraction α of field datatypes supplied by the user,
and (right) the rank threshold R.

function of R. R = 1 corresponds to the cases described so far. We can see that
relaxing R even slightly results in a dramatic increase in F1 score.

So far we have assumed unstructured datatype and domain taxonomies. How-
ever, domains and datatypes exhibit a natural hierarchical structure (e.g., “forms
for finding something” vs. “forms for buying something”; or “fields related to
book information” vs. “fields related to personal details”). It seems reasonable
that in partially-automated settings, predicting a similar but wrong class is more
useful than a dissimilar class.

To explore this issue, our research assistants converted their domain and
datatype taxonomies into trees, creating additional abstract nodes to obtain
reasonable and compact hierarchies. We used distance in these trees to measure
the “quality” of a prediction, instead of a binary “right/wrong”. For domain
predictions, our algorithm’s prediction is on average 0.40 edges away from the
correct class, while the baseline algorithm’s predictions are 0.55 edges away.
For datatype prediction, our algorithm’s average distance is 2.08 edges while
the baseline algorithm averages 2.51. As above, we conclude that our algorithm
outperforms the baseline.

3 Supervised Category Classification

The previous section addressed the classification of Web forms and their fields.
We now address how to categorize Web Services. Since Web Services can export
more than one operation, a Web Service corresponds loosely to a set of Web
forms. As described in Sec. 1, we are therefore interested in classifying Web
Services at the higher category level (“Business”, “Games”, etc.), rather than
the lower domain level (“search for a book”, “purchase a book”, etc.) used for
classifying Web forms.

3.1 Problem Formulation

We assume a set C = {C1, C2, . . .} of Web Service categories. Each Ci corre-
sponds formally to a subset of some domain ontology D: Ci ∈ 2D for each i.



Category taxonomy C and number of Web Services for each category
Business (22) Communication (44) Converter (43) Country Info (62)
Developers (34) Finder (44) Games (9) Mathematics (10)
Money (54) News (30) Web (39) discarded (33)

Fig. 5. Web Service categories C.

For example, the “Business” category would include any Web Service whose
operations are related in some way to business.

We treat the determination of a Web Service’s category as a text classifica-
tion problem, where the text comes from the Web Service’s WSDL description.
Unlike standard texts, WSDL descriptions are highly structured. Our experi-
ments demonstrate that selecting the right set of features from this structured
text improves the performance of a learning classifier. By combining different
classifiers it is possible to improve the performance even further, although for
both the feature selection and the combination no general rule exists.

In the following sections, we describe our Web Service corpus, describe the
methods we used for classification, and evaluate our approach.

3.2 Web Services Corpus

We gathered a corpus of 424 Web Services from SALCentral.org, a Web Ser-
vice index. These Web Services were then manually classified into a hierarchical
taxonomy C. To avoid bias, the person was a research student with no previous
experience with Web Services. The person has the same information as given on
SALCentral.org, and was allowed to inspect the WSDL description if necessary.
The person was advised to adaptively create new categories while classifying the
Web Services and was allowed to arrange the categories as a hierarchy.

The 424 Web Services were classified by our assistant into 25 top level cat-
egories. As shown in Fig. 5, we then discarded categories with less than seven
instances, leaving 391 Web Services in eleven categories that were used in our
experiments. The discarded Web Services tended to be quite obscure, such as
a search tool for a music teacher in an area specified by ZIP code. Even for a
human classifier, these services would be extremely hard to classify. Note that
the distribution after discarding these classes is still highly skewed, ranging from
nine Web Services in the “Games” category, to 62 services in the “Country In-
formation” category.

3.3 Ensemble Learning

As shown in Fig. 6, the information available to our categorization algorithms
comes from two sources. First, the algorithms use the Web Service description
in the WSDL format, which is always available to determine a service’s cat-
egory. Second, in some cases, additional descriptive text is available, such as
from a UDDI entry. In our experiments, we use the descriptive text provided by
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Fig. 6. Text structure for our Web Service corpus

SALCentral.org, since UDDI entries were not available. We parse the port types,
operations and messages from the WSDL and extract names as well as comments
from various “documentation” tags. We do not extract standard XML Schema
data types like string or integer, or informations about the service provider. The
extracted terms are stemmed with Porter’s algorithm, and a stop-word list is
used to discard low-information terms.

We experimented with four bags of words, denoted by A–D. The composition
of these bags of words is marked in Fig. 6. We also used combinations of these
bags of words, where e.g. C+D denotes a bag of words that consists of the
descriptions of the input and output messages. We converted the resulting bag
of words into a feature vector for supervised learning algorithms, with terms
weighted based on simple frequency. We experimented with more sophisticated
TFIDF-based weighting schemes, but they did not improve the results.

As learning algorithms, we used the Naive Bayes, SVM and HyperPipes al-
gorithms as implemented in Weka [15]. We combined several classifiers in an
ensemble learning approach. Ensemble learners make a prediction by voting to-
gether the predictions of several “base” classifiers. Ensemble learning has been
shown in a variety of tasks to be more reliable than the base classifiers: the whole
is often greater than the sum of its parts. To combine two or more classifiers, we
multiplied the confidence values obtained from the multi-class classifier imple-
mentation. For some settings, we tried weighting of these values as well, but this



did not improve the overall performance. We denote a combination of different
algorithms or different feature sets by slashes, e.g. Naive Bayes(A/B+C+D) de-
noting two Naive Bayes classifiers, one trained on the plain text description only
and one trained one all terms extracted from the WSDL.

We split our tests into two groups. First, we tried to find the best split of
bags of words using the terms drawn from the WSDL only (bags of words B–D).
These experiments are of particular interest, because the WSDL is usually au-
tomatically generated (except for the occasional comment tags), and the terms
that can be extracted from that are basically operation and parameter names.
Note that we did not use any transmitted data, but only the parameter descrip-
tions and the XML schema. Second, we look how the performance improves, if
we include the plain text description (bag of words A).

3.4 Evaluation

We evaluated the different approaches using a leave-one-out methodology.
Our results show that using a classifier with one big bag of words that con-

tains everything (i.e. A+B+C+D for WSDL and descriptions, or B+C+D for
the WSDL-only tests) generally performs worst. We included these classifiers
in Fig. 7 as baselines. Ensemble approaches where the bags of words are split
generally perform better. This is intuitive, because we can assume a certain de-
gree of independence between for example the terms that occur in the plain text
descriptions and the terms that occur in the WSDL description. What is a bit
more surprising is that for some settings we achieve very good results if we use
only a subset of the available features, i.e. only one of the bags of words. So, in
these cases, sometimes one part is greater than the whole. However, we could
not find a generic rule for how to best split the available bags of words, as this
seems to be strongly dependent on the algorithm and the actual data set.

Space restrictions prevent us from showing all our results, so in Fig. 7 we give
the accuracy for the classifiers that performed best. Note that SVM generally
performs better than Naive Bayes, except for the classifier where we used the
plain text descriptions only. An ensemble consisting of three SVM classifiers
performs good for both the WSDL-only setting and also when including the
descriptions. However, the best results are achieved by other combinations.

In a machine learning setting with a split feature set it is also possible to use
Co-Training [1] to improve classification accuracy, if unlabeled data is present.
In preliminary experiments we added 370 unlabeled Web Services. In this par-
ticular setting we could gain no advantage using Co-Training, but due to time
restrictions we were not able to fully explore this area.

For a semi-automatic assignment of the category to a Web Service, it is not
always necessary that the algorithm predicts the category exactly, although this
is of course desirable. A human developer would also save a considerable amount
of work if he or she only had to choose between a small number of categories.
For this reason, we also report the accuracy when we allow near misses. Fig. 7
shows how the classifiers improve when we increase this tolerance threshold. For
our best classifier, the correct class is in the top 3 predictions 82% of the time.
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Fig. 7. Classification accuracy for WSDL only (left), and both WSDL and descriptions
(right).

4 Unsupervised category clustering

As a third approach towards our goal of automatically creating Web Services
metadata, we explored the use of unsupervised clustering algorithms to auto-
matically discover the semantic categories of a group of Web Services.

4.1 Clustering Algorithms

We tested five clustering algorithms on our collection of Web Services. First, we
tried a simple k-nearest-neighbour algorithm. Hierarchical group average and
complete link algorithms (e.g. [14, 12]) serve as representatives of traditional ap-
proaches. We also tried a variant of the group average clusterer that we call
Common-Term, and the Word-IC algorithm [16]. The Word-IC algorithm, un-
like the other clustering algorithms, does not rely on a traditional cosine based
similarity measure between the documents (i.e. in the web services in our case),
but hierarchically merges clusters based on the number of intersecting words and
a global quality function. The global quality function also serves as a halting cri-
terion. The Common Term algorithm halts, when the top level clusters do not
share any terms. For the group average and complete link algorithms, we used
a minimum similarity between documents as a halting criterion. As a baseline,
we partition the Web Services into eleven random clusters.

Our Common-Term algorithm differs from the standard group average clus-
tering in the way the centroid document vector is computed. Instead of using
all terms from all the sub-clusters, only the terms that occur in all sub-clusters
form the centroid are used. Like the Word-IC algorithm, our hope is that this
leads to short and concise cluster labels.

We use the standard cosine approach with TFIDF weighting to measure the
similarity σ(a, b) between two “documents” a and b.

4.2 Quality Metrics for Clustering

Evaluating clustering algorithms is a task that is considerably harder than eval-
uating classifications, because we cannot always assign a cluster to a certain



reference class. Several quality measures have been proposed; see [13] for a re-
cent survey.

We have evaluated our clustering algorithms using Zamir’s quality function
[16], and the normalized mutual information quality metric described in [13].
We also introduce a novel measure inspired by the well-known precision and
recall metrics that correlates well with other quality measures and has a simple
probabilistic interpretation.

In the literature on evaluating clustering algorithms, precision and recall
have only been used on a per-class basis. This assumes that a mapping between
clusters and reference classes exists. The fraction of documents in a cluster that
belong to the “dominant” class, i.e. the precision assuming the cluster corre-
sponds to the dominant class, is known as purity. Usage of the purity measure is
problematic, if the cluster contains an (approximately) equal number of objects
from two or more classes. This clustering might not even be unintuitive, if it is
merely the case that the granularity of the clustering is coarser than that of the
reference classes.

We modify the definitions of precision and recall to consider pairs of objects,
rather than individual objects. Let n be the number of objects. Then there are
n(n−1)

2 pairs of objects. Each such pair must fall into one of four categories: the
objects are put in the same class by both the reference clusters and the clustering
algorithm, they are clustered together but in difference reference clusters, etc.

clustered together? yes no
in same reference class? yes a b

no c d

If a, b, c and d are the number of object pairs in each case, then a + b + c + d =
n(n−1)

2 . Precision and recall can now be computed the same way as in standard
information retrieval: precision = a/(a+c) and recall = a/(a+b). Other metrics
such as F1 or accuracy are defined in the usual way.

Note that there is a simple probabilistic interpretation of these metrics. Pre-
cision is equivalent to the conditional probability that two documents are in the
same reference class given they are in the same cluster. Recall is equivalent to
the conditional probability that two documents are in the same cluster given
they are in the same reference class. Let R denote the event that a document
pair is in the same reference class and C denote that a document pair is in the
same cluster. Then we have that precision = P (R ∧ C | C) = P (R | C), and
recall = P (R∧ C | R) = P (C | R).

Note that precision is biased towards small clusters, but because we are con-
sidering document pairs it is not trivially maximized by placing every document
in its own cluster. Recall is biased against large clusters, as it reaches the maxi-
mum when all documents are placed in one cluster. Finally, we observe that pre-
cision and recall are symmetric, in the sense that precision(A, B) = recall(B, A)
for any two clusterings A and B.



4.3 Evaluation

Fig. 8 shows the precision and F1 scores of the clusters generated by the var-
ious algorithms we tried. We do not report Zamir’s quality measure Q(C) or
the normalized mutual information measure Q(NMI), because they are highly
correlated with our precision metric. Precision is biased towards a large number
of small clusters, because it is easier for a clusterer to find a small number of
similar services multiple times than to find a large number of similar clusters.
Therefore we believe that also Q(C) and Q(NMI) are in fact biased towards
small clusters, although it is claimed that Q(NMI) is not biased, and although
they do not reach their optimal value for singleton clusters.

Not surprisingly, none of the algorithms does particularly well, because the
Web Services clustering problem is quite challenging. In many cases even humans
disagree on the correct classification. For example, SALCentral.org manually
organized its Web Services into their own taxonomy, and their classification bears
little resemblance to ours. Furthermore, we have 11 categories in our reference
classification, which is a rather high number. However, in terms of precision, all
our algorithms outperform the random baseline.

All clustering algorithms tend to “over-refine”, meaning that they produce
far more clusters than classes exist in the reference data. For the group average
and complete-link algorithms, the number of clusters could be decreased if we
set a lower minimum similarity, but especially the group average algorithm then
tends to produce very large clusters with more than 100 Web Services.

Note that recall is strongly affected by such an over-refinement. In our ex-
periments, it turns out that the F1 (see Fig. 8), is largely dominated by recall.
However, precision is more important than recall in the application scenarios
that motivate our research. Specifically, consider generic automatic data inte-
gration scenarios in which Web Services that have been clustered together are
then automatically invoked simultaneously. For example, a comparison shopping
agent would invoke operations from all Web Services that were clustered into a
“E-Commerce” category. Precision is more important than recall for the same
reason why precision is more important in today’s document search engines: in
a Web populated by millions of Web Services, the danger is not that a relevant
service will be missed, but that irrelevant services will be inadvertently retrieved.

We conclude from these data that Web Service category clustering is feasible
based just on WSDL descriptions, through clearly hand-crafted text descriptions
(e.g., SALCentral.org’s description or text drawn from UDDI entries) produce
even better results.

5 Discussion

Future Work. We are currently extending our classification and clustering
algorithms in several directions. Our approaches ignore a valuable sources of
evidence—such as the actual data passed to/from a Web Service—and it would



RND: Random baseline, KNN: k-Nearest-Neighbour, WIC: Word-IC, CT: Common Term, GA: Group Average, CL: Complete Link

Fig. 8. Precision and F1 for the various clustering algorithms.

be interesting to incorporate such evidence into our algorithms. Our cluster-
ing algorithm could be extended in a number of ways, such as using statistical
methods such as latent semantic analysis as well as thesauri like WordNet.

We envision a single algorithm that incorporates the category, domain, da-
tatype and term evidence shown in Fig. 1. To classify all the operations and
inputs of a Web Service at the same time, a Bayesian network like the one in
Fig. 2 could be constructed for each operation, and then a higher-level category
node could be introduced whose children are the domain nodes for each of the
operations.

Ultimately, our goal is to develop enabling technologies that could allow for
the semi-automatic generation of Web Services metadata. We would like to use
our techniques to develop a toolkit that emits metadata conforming to Semantic
Web standards such as DAML/DAML-S.

Related Work. There has been some work on matching of Web Services (e.g.
[10, 2]), but they require manually-generated explicit semantic metadata.

Clustering is a well-known technique, although it has not yet been applied to
Web Services. Besides the traditional group-average or single-link approaches,
newer algorithms like Word-IC or the Scatter/Gather-algorithms [4] exist.

The search capabilities of UDDI are very restricted, though various exten-
sions are available or under development (e.g. UDDIe [www.cs.cf.ac.uk/user/A.-
Shaikhali/uddie]). Kerschberg et al are planning to apply the techniques they
introduced in WebSifter [6] to UDDI.

When we actually want to simultaneously invoke multiple similar Web Ser-
vices and aggregate the results, we encounter the problem of XML schema map-
ping (e.g., [5, 8]).

Conclusions. The emerging Web Services protocols represent exciting new di-
rections for the Web, but interoperability requires that each service be described
by a large amount of semantic metadata “glue”. We have presented three ap-



proaches to automatically generating such metadata, and evaluated our approach
on a collection of Web Services and forms.

Although we a far from being able to automatically create semantic meta-
data, we believe that the methods we have presented here are a reasonable first
step. Our preliminary results indicate that some of the requisite semantic meta-
data can be semi-automatically generated using machine learning, information
retrieval and clustering techniques.
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